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A. Viscous and Inviscid Amplification Rates of 
Two- and Three-Dimensional linear Disturb- 
ances in the laminar Compressible 
Boundary layer, L. M. Mack 

In SPS 37-36, Vol. IV, pp. 221-223, the inviscid sta- 
bility of the laminar boundary layer was computed for 
three-dimensional disturbances for free-stream Mach 
numbers M, between 4.5 and 10.0, It was found that 
the most unstable first-mode disturbance is a three- 
dimensional wave with a wave angle u (U is the angle 
between the wave normal and the free-stream direction) 
between 50 and 60 deg. The maximum time rate of am- 
plification of the most unstable three-dimensional dis- 
turbance in that Mach number range is roughly twice 
that of the most unstable two-dimensional disturbance. 
In contrast, the most unstable second and higher-mode 
disturbances are two dimensional. These predictions were 
subsequently confinned in their essential points by the 
experiments of Kendall at M, = 4.5 (SPS 37-39, Vol. IV, 
pp. 147-148). 

The experimental results of Laufer-Vrebalovich (Ref. 1) 
at MI = 2.2, which have been available for several years, 
do not agree with the two-dimensional stability theory 
in either the location of the upper branch of the neutral- 
stability curve or the maximum rate of amplification. 
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Experimentally, the latter is about 10 times the theoretical 
value. The disagreement in the neutral-stability curves 
led Brown (Ref. 2) to abandon the parallel-flow theory 
and include in the basic equations all of the terms involv- 
ing v, the mean vertical velocity in the boundary layer, 
but without any a/ax terms. When these equations, in 
three-dimensional form, were solved for a 55-deg wave, 
the agreement between the theoretical and experimental 
neutral-stability curves of frequency was markedly im- 
proved. 

In spite of this agreement, some fundamental questions 
still remain. First, it is not known if the eigenvalues, (Y (the 
wave number in the x direction) and c+ (the phase ve- 
locity), and the amplification rate ( Y C ~  of Brown’s theory 
agree with the experimental results. Second, it is not 
known if the experimental disturbances were or were 
not three dimensional, or, if they were, whether the com- 
ponent with a 55-deg angle was dominant. The artificial 
disturbances were intended to be two dimensional, but 
this point was not checked experimentally. The agree- 
ment of the neutral-stability curves and amplification 
rates for natural and artificial disturbances was used by 
Laufer and Vrebalovich to conclude that two- and three- 
dimensional disturbances have the same stability charac- 
teristics. However, equally valid interpretations would be 
that both the natural and artificial disturbances were 
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either two dimensional or three dimensional. The latter 
possibility must be regarded as the more probable. Dum 
and Lin (Ref. 3) concluded on theoretical grounds that 
up to about M, = 1.8, three-dimensional disturbances are 
no more unstable than two-dimensional disturbances for 
an insulated-wall boundary layer. This conclusion was 
based solely on an examination of the critical Reynolds 
number, which can be a misleading criterion, particularly 
for disturbances at different wave angles. 

In this paper, the parallel-flow theory is used to study 
the stability characteristics of three-dimensional dis- 
turbances at lower Mach numbers than in SPS 37-36, 
Vol. IV. Since this form of theory gives satisfactory re- 
sults at M, = 4.5, it must at least be thoroughly tested 
at M I  = 2.2 before being abandoned for something more 
complicated. It might be mentioned that Brown’s com- 
putation with the mean z, equations of a neutral-stability 
curve at M ,  = 5.0 for a 55-deg wave gives an instability 
region with the upper-branch point at a frequency less 
than half that measured by Kendall at M, = 4.5 for the 
same wave angle. 

The inviscid-theory calculations (SPS 37-36, Vol. IV) 
were extended from M, = 4.5 down to 1.8, with the re- 
sults shown in Fig. 1, where the maximum time rate of 
amplification (for any wave number or any angle) is given 
as a function of Mach number for both two- and three- 
dimensional first-mode disturbances. The wave angles of 
the most unstable disturbances, to the nearest 5 deg, are 
designated on the figure. The ranges of the experimental 
measurements at both M, = 2.2 (Laufer-Vrebalovich) 
and M, = 4.5 (Kendall, corrected for boundary-layer 
thickness) are also shown. R is the square root of the 
x Reynolds number. It is seen that the ratio of three- 
dimensional to two-dimensional amplification rates be- 
comes quite large at low Mach numbers. At MI = 1.8, 
the maximum amplification rate of the most unstable 
three-dimensional wave is 130 times that of the two- 
dimensional wave; at M, = 2.2, it is 33 times larger than 
for the two-dimensional wave; and at MI = 3.0, the ratio 
of the maximum amplification rates is reduced to 5.8. 

The reason for the enhanced instability of three- 
dimensional disturbances at low Mach numbers is not 
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Fig. 1. Inviscid first-mode maximum amplification rates versus Mach number for two- and three-dimensional 
disturbances 

JPL SPACE PROGRAMS SUMMARY 37-42, VOL. IV 
1 

159 



hard to find. The phase velocity of an amplified disturb- 
ance is always larger than co = 1 - (l/Ml), the sonic limit, 
and less than c,, which is equal to the mean velocity at 
qs, the generalized inflection point, where (u’/T)” = 0. 
At the lowest Mach numbers (M, < l), c, is small and 
the boundary layer is almost stable to inviscid disturb- 
ances. Above M, = 1, c, increases rapidly, but the insta- 
bility of a two-dimensional disturbance remains small 
because co is almost equal to c,. It is only for MI > 3, 
that cg - co becomes sufficiently large for an appreciable 
two-dimensional instability to develop. For a three- 
dimensional disturbance, co can always be reduced to 
zero for a sufEiciently large wave angle (small Mach num- 
ber normal to wave front), and cs is independent of U. 
Consequently, there is no lower bound to cp other than 
zero, and the boundary layer can demonstrate what might 
be called its natural instability. 
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The inviscid maximum ampBcation rate at MI = 2.2 
for a three-dimensional wave differs from the experi- 
mental values by only a factor of about 2. Whether this 
improved agreement is further improved or worsened at 
finite Reynolds numbers depends on the effect of viscosity 
at this Mach number. For a two-dimensional disturbance, 
the destabilizing action of viscosity, which is solely re- 
sponsible for boundary-layer instability at M1 = 0, de- 
creases ‘sharply with increasing Mach number, as shown 
in Fig. 2, until at M ,  = 2.6 the maximum amplification 
at low Reynolds number is only a local maximum and is 
equal to the inviscid amplification rate. At Mach num- 
bers above 3, even the local maximum disappears and the 
action of viscosity is stabilizing over the Reynolds num- 
ber range of interest; i.e., a decrease of Reynolds number 
leads to a decrease in the maximum amplification rate. 
If the action of viscosity is similar for three-dimensional 
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Fig. 2. Viscous first-mode maximum amplification rates versus Mach number for two- and three-dimensional 
disturbances 
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disturbances, the amplification rates at finite Reynolds 
numbers for Mach numbers around 2 will be larger than 
the inviscid rate, and for M ,  > 3 they will be smaller 
than the inviscid rate. Consequently, the possibility exists 
that a three-dimensional disturbance has amplification 
rates in agreement with experiment at both M ,  = 2.2 
and 4.5. 

MI 

1.3 

2.2 

It is no simple matter to compute the amplification 
rates of three-dimensional disturbances at fmite Reynolds 
numbers. At M ,  = 0, the three-dimensional stability equa- 
tions are transformed by the Squire transformation into 
the two-dimensional Orr-Sommerfield equation for the 
same boundary-layer profile. The three-dimensional am- 
plification rates can be obtained from the two-dimensional 
rates already obtained. Further, the two-dimensional dis- 
turbance has the largest amplification rate. The general- 
ization of the Squire transformation used by Dunn and 
Lin, which transforms the three-dimensional inviscid 
equations (but not the solutions) into two-dimensional 
equations, does not similarly transform the complete 
parallel-flow viscous equations. The Dunn-Lin equations, 
which include only what are supposed to be the leading 
viscous terms, do transform, as would any set of equa- 
tions that do not include the dissipation terms in the 
energy equation. But if all the parallel-flow viscous terms 
are to be kept, then it is necessary to include an addi- 
tional momentum equation, as Brown did for the equa- 
tions with the v terms. The system of equations is 
increased to eighth order from the present sixth order, 
and the computer program must be rewritten. 

Dunn-Lin Eqs. Complete Eqs. a,deg LY 
c y ~ I  x io3 ac, x io3 

50 0.060 1600 1.50 1.46 

0 0.045 600 0.30 0.18 

60 0.040 1200 1.49 1.39 

Within the framework of the sixth-order system, at 
least three courses of action are possible: First, use the 
Dunn-Lin equations; second, use a set of equatims which 
are as close as possible to the correct equations; third, use 
the present complete equations as if all the terms trans- 
formed. The second option is perhaps logically superior 
to the others, but has not yet been done. Both the first 
and third options have been carried out, with most of the 
computations performed with the complete equations. 
Brown has computed a neutral-stability curve at M ,  = 2.2 
for a wave angle of 55 deg from both the two-dimensional 
complete equations (including mean v terms) plus the 
Squire transformation, and from the eighth-order system. 
With the v terms included, there is a considerable in- 
crease in the number of terms that do not transform. Even 
so, the largest error in the Reynolds number of a neutral- 
stability point at a fixed frequency is about 25%. 

Fig. 2 gives the results obtained at finite Reynolds 
numbers together with the first-mode three-dimensional 
inviscid curve and experimental results repeated from 
Fig. 1. Both the two- and three-dimensional results ob- 
tained with the complete equations are shown. The two- 
dimensional disturbance is the most unstable up to about 
M ,  = 1. For higher Mach numbers, the three-dimensional 
disturbances ( u = 4 5  deg at M ,  = 1.3, 0 = 6 0  deg at 
M ,  = 2.2) are the most unstable, with the action of vis- 
cosity up to at least M ,  = 2.2 plainly destabilizing as for 
two-dimensional disturbances. Further, the ampliftcation 
rate at M ,  = 2.2 of the most unstable three-dimensional 
disturbance is within the range of fie experimental results. 

A few comparisons have been made between amplifi- 
cation rates computed from the Dunn-Lin equations and 
the complete equations. At M I  = 1.3 the two-dimensional 
neutral-stability curves computed from the two sets of 
equations are close together. Table 1 shows that the am- 
plification rates for a 50-deg wave are also in good agree- 
ment at a Reynolds number of 1600. At M ,  = 2.2, where 
there is an important difference between the two- 
dimensional neutral-stability curves, a large percentage 
difference is evident in the two-dimensional amplification 
rates. For the 60-deg wave, the arithmetic difference of 
the two amplification rates is the same as for the two- 
dimensional wave, but the percentage difference is small. 
The most important comparison, with the amplification 
rate computed from the eighth-order system, is not avail- 
able. However, the good agreement between the results 
obtained from the Dunn-Lin and complete equations 
indicates that where the inviscid instability is important, 
as it is for three-dimensional waves at MI = 2.2, the lead- 
ing viscous terms of Dunn’s analysis are truly dominant, 
and the additional viscous terms, some of which do not 
transform by the Squire transformation, play only a sec- 
ondary role in establishing the amplification rate. 

Table 1. Comparison of amplification rates computed 
from the two-dimensional Dunn-Lin and 

complete viscous equations 
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